
CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

F3 Faculty of Electrical Engineering
Department of Computer Science

Master’s Thesis

Information system for
presentation of hotel services and
activities in surroundings as a part
of the onboarding process

Jan Veselý
Open Informatics - Software Engineering

June 2022
Supervisor: Ing. Jiří Šebek

Acknowledgement / Declaration

I would like to thank my supervisor
Ing. Jiří Šebek for helping me by giv-
ing me valuable advice in the course of
writing this thesis and my parents who
helped me conduct the user testing.

I hereby declare that I have complet-
ed this thesis on my own and that all
theused sources are included in the lis
tof references, in accordance with the
Methodological instructions on ethical
principles in the preparation of univer-
sity theses.

In Prague, June 19, 2022

Prohlašuji, že jsem předloženou prá-
ci vypracoval samostatně a že jsem
uvedl veškeré použité informační zdroje
vsouladu s Metodickým pokynem o do-
držování etických principů při přípravě
vysokoškolských závěrečných prací.

V Praze dne 19. 05. 2022

. .

iii

Abstrakt / Abstract

Tato diplomová práce se zabývá ana-
lýzou, jak efektivně uvést hosty na
jejich dovolenou pomocí dotykového ki-
osku a online webové stránky obsahující
cestovní informace o daném místě. De-
finuje nejvýznamnější skupiny uživatelů
z penzion U Veselých, jejich hlavní zá-
jmy a způsob, jakým jim může hoteliér
poskytnout potřebné informace pomocí
elektronického uváděcího systému.

Dvě uživatelské studie, ověřily po-
třebu tohoto systému. Ukázaly, že hosté
pravděpodobně využíjí elektronický ki-
osek a uvítací web k získání cestovních
informací.

Dále práce navrhuje implemetaci mi-
nimum viable product pro uvítací sys-
tém. Zahrnuje kiosek s dotykovou obra-
zovkou poháněný Rasberry Pi a webo-
vou stránku.

Klíčová slova: cestovní infromace, ho-
telový uvítací systém, dotykový infor-
mační kiosek, cestovní informační weby

Překlad titulu: Informační systém pro
prezentaci služeb hotelu a aktivit v okolí
v rámci pobytu a objednávky

This diploma thesis analyzes how
to onboard guests efficiently on their
holiday using an on-site touch screen
kiosk and an online website containing
travel information about the loca-
tion. It defines the most significant
user groups from the hotel Penzion
U Veselých, their main interests, and
how the hotelier could provide the
needed information using the electronic
onboarding system.

Two user studies we conducted to
verify the need for the product. They
showed that guests are likely to use
the electronic kiosk and the onboarding
website to gain travel information.

Further, the thesis describes the
implementation of a minimum viable
product for the onboarding system. It
includes an on-site touch screen kiosk
powered by Rasberry Pi and a website.

Keywords: travel information, hotel
guest onboarding, electronic touch-
screen kiosk, travel websites

iv

Contents /

1 Introduction 1
1.1 Benefits 1
1.2 Thesis Goals 1

2 Product Design 2
2.1 Lean Startup Methodology . . . 2

2.1.1 Build-Measure-Learn
Feedback Loop 2

2.1.2 Minimum Viable Product . . 2
2.2 Our Hypothesis 2

3 Collection of Requirements 3
3.1 Data Source 3
3.2 Target Audience 3
3.3 Travel Platforms 4

3.3.1 Booking.com 4
3.3.2 Trip Advisor 5
3.3.3 Turistika.cz, Kuduznudy.cz . 5

3.4 Trends in Hospitality 5
3.5 Future of Travel Platforms 6
3.6 Guest Satisfaction 6

3.6.1 Accommodation 6
3.6.2 Holiday Experience 6

3.7 Similar Products 7
3.7.1 Previo Alfred 7
3.7.2 MyStay 8

3.8 Related Systems 8
3.8.1 Hotel Website 8
3.8.2 Booking.com 8

3.9 Check-in Process 9
3.9.1 Before Arrival 9
3.9.2 After Arrival 9

4 Formulation of Requirements 10
4.1 Onboarding Microsite 10

4.1.1 Functional Requirements . 10
4.1.2 Nonfunctional Re-

quirements 11
4.2 On-site Kiosk 11

4.2.1 Functional Requirements . 11
4.2.2 Nonfunctional Re-

quirements 11
4.3 User Types 11
4.4 ER Model 11

5 Product Idea Validation 13
5.1 Designing User Experiments . . 13
5.2 Kiosk User Testing 14
5.3 Info Website User testing . . . 15

6 Available Technology 17
6.1 Web Frameworks 17

6.1.1 Spring Boot 17
6.1.2 Django 17
6.1.3 Ktor 18

6.2 Database Storage Engine . . . 18
6.2.1 Scaleability 18
6.2.2 Document Databases . . . 19
6.2.3 Relational Databases . . . 19

6.3 Web Frontend Architecture . . 20
6.3.1 Server Rendered 20
6.3.2 Client Rendered 20
6.3.3 Hybrid Approach 21
6.3.4 React 21
6.3.5 Vue 21

6.4 API Design 21
6.4.1 REST 22
6.4.2 GraphQL 23

7 Backend Architecture 24
7.1 Requirements 24
7.2 Possible Approaches 24

7.2.1 Event-Driven 25
7.2.2 Microservices 25
7.2.3 Monolith 25

7.3 Monolithic Approach 26
7.4 Layered Architecture 26

7.4.1 Data Layer 27
7.4.2 Data Access Layer 28
7.4.3 GraphQL API 28
7.4.4 HTTP Layer 29

8 Implementation Details 30
8.1 Backend 30

8.1.1 GraphQL Entity Mapping . 30
8.1.2 GraphQL Authentication . 31
8.1.3 Input Validation 31
8.1.4 Storing Images 32

8.2 Multiplatform client 32
8.2.1 Kotlin Multiplatform . . . 33
8.2.2 Kotlin Symbol Processing . 33
8.2.3 Compiling DTOs 33
8.2.4 Client Library 34

8.3 Frontend 34
8.3.1 State Management 34
8.3.2 Navigation 35
8.3.3 Onboarding Screen 37

v

8.3.4 Trip Screen 38
8.3.5 Touchscreen Kiosk 39

9 Kiosk - Hardware / Software 40
9.0.1 Screen 40
9.0.2 Computing Unit 40

9.1 Operating System 40
9.1.1 Touch Screen Correction . 40
9.1.2 Autorun Configuration . . 41

9.2 Cost of Operation 42
10 Deployment 43

10.1 Pipeline 43
10.1.1 Stages 43

10.2 Docker Images 44
10.2.1 Vue frontend 44
10.2.2 Ktor Backend 44

10.3 Docker compose 45
10.4 Reverse Proxy 45

11 Testing 46
11.1 Test Goals 46
11.2 Backend Testing 46
11.3 Frontend Testing 48
11.4 Small Usability Testing 49

11.4.1 Survey 49
11.4.2 Results 49

11.5 Testing Summary 50
12 Project Future 51

13 Conclusion 52

References 53

A Thesis Assignment 57

B Screenshots 59

vi

/ Figures

3.1 Previo Key application.7
3.2 MyStay application..8
4.1 Onboarding process diagram . . 10
4.2 ER model . 12
7.1 Layered architecture diagram. . 27
7.3 DAO objects. 28
8.1 Defining GraphQL entity

from DB entity 30
8.2 Extending data fetcher with

authentication 31
8.3 Validating multiplatform en-

tity . 32
8.4 Image persistence diagram. 32
8.5 Kotlin data class to Type-

Script compilation. 34
8.6 Multiplatfrom client action

example . 34
8.7 State managment of Edit-

TripDialog . 35
8.8 HTA diagram of user interface . 36
8.9 Onboarding page screen 37

8.10 Trip popup Screen 38
8.11 Picture of the kiosk 39
10.1 Deployment diagram. 43
10.2 Dockerfile for Vue 44
10.3 Dockerfile for Ktor 44
10.4 Service Deployment diagram . . 45
11.1 Test coverage of layered ar-

chitecture . 46
11.2 Code coverage table. 47
11.3 Using Multiplatform client

for testing . 48
11.4 Cypress test . 48

B.1 Screen edit trip popup. 59
B.2 Screen edit hotel settings 60

vii

Chapter 1
Introduction

Tourism was worth 2.5% of the Czech Republic’s GDP in the pre-pandemic year 2019.
Around 240,000 people are permanently employed in this sector, which is 4.41% of the
total employment[1].

According to the American Hotel and Lodging Association 2022 report section, future
trends „The personalization of technology will take another leap forward, with hotels
using digital technologies to ease workloads and further satisfy each individual guest
with a new guest experience. As a result, hotel employees are spending less time on
tasks, such as processing check-ins, and can pursue initiatives that can make a greater
impact on customer service.“[2]

Going on holiday has significant positive social and health implications. However, this
is only applicable if the guests feel satisfied on holiday. Holiday planning is a complex
task which connects multiple scattered sources, often resulting in guests visiting just
the most popular places, leading to overturism and little satisfaction.

This thesis analyses the most common sources of travel information and proposes a
minimum viable product which connects hospitality providers as a source of most valid
travel information and guests via an online onboarding website and on-site touch screen
kiosk.

1.1 Benefits
. Hotel guests will receive more comprehensive information about the location through

an on-site kiosk and an online onboarding website.

. Decreased time needed to serve guests during rush hours.

1.2 Thesis Goals
. Research how to ideally inform guests about local travel tips.

. Propose and implement a minimum viable product which informs guests about local
travel tips.

1

Chapter 2
Product Design

This chapter establishes the basic terminology and methodology for developing a new
product. The terminology is built around the uncertainty of whether the product will
be viable from the business point of view. It describes how to refine and test an idea.

2.1 Lean Startup Methodology
The lean startup is becoming1 the new standard when refining and generating new ideas
and insights for business. It challenges the usual waterfall way of designing a product.

We will focus on technique called Concierge MVP. It is one of three recommended
ways to gain validated learning from the Lean Startup methodology. It states that one
of the ways to gain validated learning is to build a product just for one customer a
learn from his needs. In our case, it is Penzion U Veselých.

2.1.1 Build-Measure-Learn Feedback Loop
The Build-Measure-Learn Feedback Loop is a continuous quality improvement model
consisting of 3 key stages: Build, Measure, Learn. It is the key to gaining validated
learning. First, a hypothesis is proposed, a product is developed, and finally, validated
learning is derived from the product’s usage. This inside is then used as a foundation
for another loop iteration, which might not even connect to the previous iteration, to
learn what customers want and makes a profit.

2.1.2 Minimum Viable Product
The Minimum Viable Product is defined in Lean Startup by Eric Ries as „The MVP is
that version of the product that enables a full turn of the Build-Measure-Learn loop with
a minimum amount of effort and the least amount of development time. The minimum
viable product lacks many features that may prove essential later on. However, in some
ways, creating a MVP requires extra work: we must be able to measure its impact.
For example, it is inadequate to build a prototype that is evaluated solely for internal
quality by engineers and designers. We also need to get it in front of potential customers
to gauge their reactions.“[3]

2.2 Our Hypothesis
Will guests use the hotel’s electronic travel information system? If so, will that lead to
decreased time to onboard and serve the guests.

1 https://hbr.org/2013/05/why-the-lean-start-up-changes-everything Why the Lean Start-Up
Changes Everything

2

https://hbr.org/2013/05/why-the-lean-start-up-changes-everything

Chapter 3
Collection of Requirements

The collection of requirements is essential for product design and its usefulness verifi-
cation. In this chapter, we will look at products in a similar category as well as raw
data from Penzion U Veselých.

Our goal is to formulate what information guests need for their holiday and find how
to present the data in a way that will be usefull to the guests.

3.1 Data Source
Most of the raw data and personal experience used in this thesis come from Penzion U
Veselých, a family-run hotel in Pec pod Sněžkou.

Author’s note: Our family has been running a small family hotel in Pec pod Sněžkou
for over 25 years. Our long experience serving guests directly without any staff gives
us an excellent empirical image of what guests might need. This information was not
scientifically measured and is biased [4].

3.2 Target Audience
The research is limited only to domestic tourism. For simplicity, we will only consider
summer holidays since, in the winter, the offer is generally directed towards skiing,
and other activities are only additional. Guests can be divided into several distinct
categories based on interviews with guests.

. Relaxation stays regardless of age. These visitors arrive at a place with the primary
goal of releasing stress and leaving their city. The length of stay is typically a weekend.
They prefer a maximally undemanding walk around the very close surroundings and
wellness or massage services in the evening. These visitors make up a small part of
the total number of guests. However, the weight of this category is slowly increasing.. Young couples age typically under 30, prefer to stay active and in nature (hiking,
biking, but also non-traditional sports and experiences - paragliding). At the same
time, they are not afraid to go on longer hikes or drive further for some exciting
destination, which they usually learn about at the place of stay, usually from the hotel
staff. For example, hikes to the nearby highest peaks at sunrise are very popular in
this category. Length of stay is typically 2-3 nights. In the evening, they prefer more
private events such as wellness and dinner for two in a more luxurious environment.. Older couples prefer to relax with shorter trips in the surroundings, especially in
places with scenic views. They use cable cars to get around mountain peaks and
other public transport. They gratefully receive information directly at the stay site,
either from the hotel or they look for it in the information centres, because it is
usually more difficult for them to organize their stay using the Internet. The length
of stay is typically four nights. These visitors would probably most welcome a service

3

3. Collection of Requirements .
in the accommodation facility, which would offer them several proven and exciting
variants of visit, whether in written or digital form. They seek peace and relaxation
in the afternoon, sitting on the terrace with coffee or good wine.. Parents with small children (typically up to 10 years old) are mainly looking for
suitable attractions for children to whom they subject the whole holiday. They
especially prefer outdoor attractions for children and short trips using cable cars.
They like to guide children on educational, game-like trails. They usually visit various
natural, cultural or technical attractions with the help of a car. They are very
grateful to accept a variety of ideas for their holiday. For example, finding a sandpit
or playground near the building or a path suitable for a stroller is often utterly
impossible on the Internet. The length of stay is typically five nights. They seek
peace and relaxation in the afternoon after a busy day with their children, sitting on
the terrace with coffee or good wine.

There is one common phenomenon for all the above categories. Whether the decision
about going on holiday is long-term or impulsive, almost everyone lacks whatever plan
to do in a given place. When talking to them, there is an impression that they are
going to a place mainly because it is known and not to visit something interesting.
The visits are usually limited to some of the most famous destinations, such as Sněžka.
They usually look for travel ideas on the spot, with the help of the Internet, less so
by visiting the info centres. Penzion U Veselých provides them with handmade sets of
the most exciting places to visit sorted and organized by categories: for children, in
bad weather, with a car... We must spend approximately 30 minutes of talk to each
guest to onboard them on their holiday. When searching the Internet, guests do not do
extensive research to find less popular activities that are still exciting, which might be
better for them due to over-tourism in some places.

Travel platforms focus primarily on accommodation offers. Tips for trips are not
there. There is a complete lack of a more comprehensive view of the location. Info
centres provide mainly information leaflets. The last source for visitors is the cities’
websites, where there are usually only tips on what to do in the town.

As a result, visitors have many sources of highly fragmented information. Despite
the lack of preparation, guests still expect all this information to be provided by the
hotelier. There is a gap in the market for software that would provide guests with
organized information about the local places from locals.

3.3 Travel Platforms

Travel platforms have gained massive popularity in recent years due to accessibility to
search and order services without the need to contact the hospitality provider directly
and agree on dates and services. From experience in Penzion U Veselých, it takes 1.5
to 3 days to communicate the order with all details via email or phone.

In most cases, the price guests pay for the comfort of booking platforms is unac-
ceptable for them, given it was explained to them how much money they could have
saved.

3.3.1 Booking.com

Booking.com is the number one online travel agency for lodging reservations, with its
market share of over 67%[5].

4

. 3.4 Trends in Hospitality

Booking.com launched in 2019 attractions feature, which is very similar to the trip
advisor. Unfortunately, there are no free of charge activities, and it focuses primarily
on leisure and fun in big cities. It is not suitable for countryside holiday information.

3.3.2 Trip Advisor
Tripadvisor is an American online travel company that runs a mobile application and
website with user-generated content. It offers online hotel reservations, transportation,
travel experiences, restaurant reviews and recommendations.

As an international company, they benefit from a considerable user base. According
to Google play, more than 100 000 000 users downloaded the TripAdvisor application.
The content is more focused on tour guide content and tickets. It lacks non-tour,
non-payable content such as nature wonders, hiking information, and local information
about the place.

3.3.3 Turistika.cz, Kuduznudy.cz
Turistika.cz, Kuduznudy.cz travel advice sites mainly focused on local travel tips, event
aggregation and search. They inform guests what they can do and point them to the
activities’ official websites. Over the years, they have collected a massive amount of
travel tips. The content is well written and very informative. The site has a massive
audience. According to their website, [6] kudyznudy.cz displays more than 20 million
activities per year.

However, the content is mainly organized by region. It lacks local information the
guest needs, such as recommendations sets based on a location.

Kudyznudy.cz has a mobile application. There are no better search alternatives in
the application than on the website, and overall the application is not suited to obtain
any local information quickly, which is unfortunate.

3.4 Trends in Hospitality
Tourism is an important economic activity at the national and regional level. In 2019,
this branch accounted for 2.9 % of the Czech Republic’s gross domestic product [1] .
According to Accenture’s 2021 US Holiday Shopping Survey, approximately 40 % of US
consumers intend to focus on saving for a vacation [2]

. Contactless hospitality services: Especially in the aftermath of the 2022 pandemic
of covid-19, guest expectations in health safety boosted demand for contactless ser-
vices on all levels of hospitality services from check-in through using hotel services,
searching upsell services to the check-out and payments. Many platforms and hos-
pitality providers have embraced this model and started to automate information
distribution through electronic channels such as email or the web, trying to fill in the
decline of orders in search of other ways to connect with customers.. Information Quality: The quality of information on hotel websites has increased.
Guests searched for relevant and up to date information regarding travel rules which
led the hospitality providers to update their web content regularly, as observed in
Pec pod Sněžkou resort.. Travel Advice: Guests are less likely to ask local staff for travel advice. The fear of
covid-19 has significantly reduced social interaction between guests and staff. From
the perspective of small businesses, it is a good thing since their time is spent mainly
on the hotel operation, thus allowing them to finish sooner.

5

3. Collection of Requirements .
. Online Booking: The number of online bookings has expanded immensely. Due to

uncertainty of travel rules, such as the number of vaccination doses, guests become
much more flexible and reserve a holiday within a few days from arrival. Such a
short frame of time further reduces the amount of information the guest is willing to
search about the destination.

3.5 Future of Travel Platforms
The fundamental problem of aggregation servers from the perspective of holiday guests
is their focus on what sells (accommodation), not the guest’s experience. Providing
guests with up to date and relevant information is highly labour intensive. It can be
only achieved by working with someone on the spot, such as hotels or tour guides.

There is a possibility of a new business model which would involve hotels producing
travel information in exchange for better online search positions. The travel information
would bring more customers to the platform. The customers would buy accommodation,
thus generating money for the platform.

The accommodation providers themselves seem to be the most suitable, not the cities,
as they meet the guests directly, receive many questions, and have very well-founded
answers. They know the location the best and can, based on their personal experience,
recommend or not recommend a trip or place to visit.

3.6 Guest Satisfaction
Examining guest satisfaction can give us attributes we should focus on when design-
ing our system. Guest satisfaction is based on two main factors accommodation and
experience.

3.6.1 Accommodation

Accommodation is one of the core factors in guest satisfaction. It is also the entry
point for a holiday. The critical problem discovered through the 25 years old experience
working with guests is false but anticipated expectations of the hotel and its services.
Guests are often unaware of what they have ordered or what services to expect to be
free or paid.

Online travel agencies make this problem even harder. All the communication with
the customer is indirect and often censored (Booking.com messaging system) to prevent
the direct ordering of the stay on the hotel’s website. They present themselves as the
only source of hotel/travel information. The guests are not prompted to explore the
hotel’s official website, where more helpful information is available.

Should the hotels improve the satisfaction convertibility - The number of satisfied
guests to the total number of guests - they need to improve the quality and the amount
of information the guests are presented. Too much information is counterproductive as
well.

3.6.2 Holiday Experience

The secondary source of guest satisfaction is what activities they do. This parameter
is hard to grasp since it varies depending on the guest category, weather, and other
conditions. However, we can say that not fulfilling this category has a tremendous
impact on guest satisfaction.

6

. 3.7 Similar Products

As discussed in section 3.3, visitors have many sources of highly fragmented infor-
mation about the place in the best-case scenario. In most cases, they go to the most
popular places even though there are better options for trips.

3.7 Similar Products

3.7.1 Previo Alfred

Previo is a major provider of hotel management systems, from booking management
to accounting. It integrates almost all main hotel aggregation sites. They present
themselves as all in one system, and in 2021, they added a mobile check-in app to their
portfolio.

Its main goal is to help check in the guests, but it also has useful features to inform
guests what they can do on the spot. Unfortunately, hoteliers cannot integrate the app
without opting into Previo ecosystem. The interconnection is the main drawback for
our use in Penzion U Veselých since we do not use the Previo booking management
system.

The application offers all the basic needs the guest could want: information about the
location in article form, room services, and the ability to order hotel service throughout
the check-in process.

The Previo Klíč application has over 1000 downloads in the Google Play store[7].
That is not many compared to that Previo serving 3 432 Hotels as of 2022, and the
app was last updated in late 2020. The convergence is relatively small - the number of
total guests to guests who used the app is small. The following picture 3.1 shows the
application.

Figure 3.1. Previo Key application interface

7

3. Collection of Requirements .
3.7.2 MyStay

MyStay1 is a Czech Startup offering a fully digitalized check-in service for hotels with
more than a dozen integrations to other services such as Booking.com Mews. Its main
targets are more prominent hotel resorts or B&B services.

Their check-in process includes pre-arrival SMS, weather forecast, digitalized key
pickup, legal records of guests, upsell of hotel services, online payment and local travel
information. As with Previo Klíč, MyStay has its application. The following picture
3.2 shows the application.

If a hotel is not using one of the supported hotel management systems, it is not
possible to use just the onboarding or the information part of the system.

Figure 3.2. MyStay application interface.

3.8 Related Systems
The main one is the hotel website reservation and guest database POS system.

In Penzion U Veselých, we do not have a booking management system. Every order
is managed manually. There are two main reasons: the first is a transfer cost, and the
other is an operating cost. Every order has a record in one big MS Word table. It may
seem ineffective, but it is beneficial for a small hotel like Penzion U Veselých, where
flexibility is needed over scalability. Unfortunately, there is no single source of valid
orders to use in our onboarding system.

3.8.1 Hotel Website
In 2021 Penzion u Veselých got new hotel website. New Order Process was introduced.
Now guests can specify what rooms, how many people and what services they want.

This system is entirely under our control. We can use it to send more travel informa-
tion through our onboarding process since we have contact information and the type of
service the guests are requesting.

3.8.2 Booking.com
In 2022 around 45% of all orders were received through Booking.com in Penzion U
Veselých. Booking has its ecosystem and APIs to help integrate hotels’ custom needs.

1 https://www.gomystay.com/cs/discover/

8

https://www.gomystay.com/cs/discover/

. 3.9 Check-in Process

However, one must Booking.com partner. The partnership is meant for hotel manage-
ment system providers and the overhead to integrate mandatory services and comply
with all terms in the license is unmanageable and not practical on a small scale[8].

. PCI & PII compliance. Cloud-based or Central Server based software. Supports price and availability management. Supports reservation management. Supports real-time updates of rates and availability. Supports instant confirmation of incoming reservations. Supports managing property content

The idea was to hook into the booking.com events stream and dispatch information
to the new guests. However, this is not possible.

3.9 Check-in Process
Since we are a small business, we do not have a specialized booking system. Most of
our orders go through online travel agencies, mainly booking.com and hotel.cz. We
manually transfer these orders to one big DOCX table where all information is nicely
grouped. This system has proven to be a nice balance between cost and efficiency.
Booking systems are relatively expensive[9].

3.9.1 Before Arrival
Booking.com guests receive initial information via the booking messaging system via
an invitation letter.

After all order details (date and number of rooms) are worked out, direct order guests
receive travel and accommodation information through an order summary email.

3.9.2 After Arrival
Upon arrival, we usually spend 30 minutes explaining what guests can do in the sur-
roundings depending on the time. During rush hours, all information is limited to just
handing over keys to a room.

We usually explain what to do on the first day (short walks, restaurants) or how to
go to main attractions. We show them not so well-known places.

9

Chapter 4
Formulation of Requirements

This chapter will formally summarize findings from the chapter Collection of Require-
ments. The following diagram 4.1] depicts how guests will be informed about the hotel
and the activities they can do in the location.

Guest

Placed order
Link to onboarding

website is included in
a welcome email

Arrival

Onboarding microsite

Time

Guests gain information about the

location and the hotel

On-site touch kiosk

Figure 4.1. On boarding process diagram

4.1 Onboarding Microsite
This page will provide all non-order information that can be generalized and sent to all
guests.

4.1.1 Functional Requirements

. FR1 Microsite: Guests will receive aggregate information about the location through
a microsite accessible on the internet through a link sent in the order email.. FR2 Travel information: Guests will be provided with activities and informative ar-
ticles. Activity will contain a title text, navigation tags and images and be organized
into categories. The article will contain text and a title.. FR3 Accommodation information: Guests will receive the most essential hotel none
order information, for example, what services are available, through a rich text editor.. FR4 Automated information delivery: Upon a new order, the system automatically
sends an email with a link to the information website with all travel and accommo-
dation information.

10

. 4.2 On-site Kiosk

4.1.2 Nonfunctional Requirements

. NFR1 Easily accessible: The microsite must be easily accessible for the user/guest
— a link without registration.. NFR2 Single page: All important information must be on a single page. The guests
should not leave the page as they navigate through thorough details.. NFR3 Mobile support: The online microsite must be mobile friendly for guests
viewing content on site through portable devices.

4.2 On-site Kiosk

An interactable electronic kiosk with a touch screen will be placed next to the hotel
reception.

4.2.1 Functional Requirements

. FR5 Same content: The same travel and hotel information as on the microsite will
be available in the kiosk.. FR6 Hotel website: Guests will be able to display the hotel website on the kiosk.

4.2.2 Nonfunctional Requirements

. NFR4 Simple installation: The electronic kiosk must be easy to install and manage
for hotel staff.. NFR5 Software updateability: The kiosk must be remotely updatable without any
interaction with the hotel.

4.3 User Types

. Admin: One admin user per hotel. The user will log in through email and password.
Will manage all data on the microsite.. Guest: Will have read-only access to the microsite. No registration is required.

4.4 ER Model

The following diagram 4.2 summarizes which data is persisted. All fields named text
contain rich text.

. Hotel: The core entity that holds all information about the hotel that is displayed
on the onboarding microsite.. Travel info: This entity represents helpful information that might be handy to guests
but is not a single activity—usually information about local travel packages and
transportation.. Trip category: Groups trips for better navigation and search.. Trip: This entity holds all information about one trip the guest can view.

11

4. Formulation of Requirements .

TripCategoryEntity

PK val _id: String

name: String

FK trips_ids: List<String>

HotelEntity

PK _id: String

hashed_password: String

hotel_name: String

FK logo_img_id: String

FK intro_img_id: String

email: String

accommodation_text: String

contact_phone: String

contact_email: String

official_website: String

FK trip_categories: List<TripCategoryEntity>

TripEntity

PK _id: String

FK hotel_id: String

title: String

text: String

FK img_ids: List<String>

tags: List<String>

ImageEntity

PK _id: String

binary: Binary

TravelInfoEntity

PK _id: String

FK hotel_id: String

title: String

text: String

Figure 4.2. ER model.

12

Chapter 5
Product Idea Validation

An essential part of the product idea validation process is prototyping. Through early
mockups of the application, often just visuals, we can validate the usefulness of the
application concept and see its UI/UX pain points. We observe users’ first impressions
under predefined tasks or how they freely discover application features.

We define prototype tests based on their fidelity level. Fidelity can be defined as how
well the prototype resembles the final application in terms of visuals and functionality
[10]. We should choose an appropriate prototype for different types of testing.

Low fidelity prototype serves to validate the product idea and form the fundamen-
tals of the application’s design, such as structure and layout. Details such as colours,
transitions, visual effects, and excessively detailed functionality should be avoided since
they may focus the user on validating the UI/UX, not the application’s concept itself
[11].

. Prototyping does not require many resources.. Allows iterating ideas quickly.. Less pressure on the users. Focus on the concept, not the design.

High fidelity prototype comes to play once we have a solid grasp of what features
the application includes. We can model the user interface more closely. High fidelity
prototype usually serves as source material by which frontend programmers develop
the application. Tools like Figma have greatly simplified the whole process of making
a high fidelity prototype look real.

. Tools can produce almost accurate application mockups ready for presentation to
stakeholders and to perform user testing.. Allows testing design details menus and transitions, which often adds to user expe-
rience the most.. Designing clickable prototypes.

5.1 Designing User Experiments
Two tests were designed for product idea validation—the first one focused on the on-
boarding website and the second one on the on-site kiosk.

For both tests, a high fidelity Figma clickable prototype was introduced to the user
through an appropriate medium: web browser and on-site touch screen panel. The
prototype can be seen on picture 5.1.

However, the Figma prototype cannot simply be connected to tools like google an-
alytics. Especially for the kiosk where there is a static single page application where
there are no routes to track. Measuring the number of clicks with tools like Hotjar and
generating Heatmaps [12] can measure user satisfaction. For more complicated user
testing, there is a tool Maze.co.

13

5. Product Idea Validation .
The goal was to observe if the guests were likely to use the kiosk or the onboarding

website. Applying a more robust approach with users following scenarios would break
the typical environment. The test goal was not to improve the product but to decide if
the idea was interesting enough to the guests.

5.2 Kiosk User Testing. Discover if guests will interact with a touch screen panel where they might find some
helpful information about the local place and the hotel.. Evaluate the usefulness of the kiosk for hotel guests.

Setup
A high fidelity prototype was designed with a focus on travel information and hotel

information. It included four trips and two articles about Pec pod Sněžkou town and
its surrounding.

A 22 ViewSonic TD2223 touch display was placed on a table in the dining room
powered by Raspberry Pi 4. The Google Chrome browser was set to kiosk mode with
the online Figma prototype.

On arrival, when introducing the hotel to the guests, my parents informed them that
they could find more information in the kiosk and their opinion on it and observed their
reaction.

The guests were divided into two subgroups. The first one was introduced to the
kiosk at the introduction to the hotel. The second one was not and was used as a
control group. At the end of their stay, we tried to ask if they interacted with the kiosk
or if they liked the idea.
chromium -kiosk https://figma.com

Potential biasese. The useability testing was conducted in the winter when guests’ primary focus was
not travelling but skiing. Unfortunately, the schedule did not allow us to push the
date forward.. The screen did not resemble a standard kiosk panel

Results
Throughout testing, there were 22 guests in the hotel over two weekends. There were

12 guests in the group introduced to the kiosk, and 5 answered that they liked the idea.
7 guests did not directly answer and changed the topic of discussion, usually asking for
local information.

In the control group, which was not introduced to the kiosk, there were 10 guests.
When they returned the room key to the reception, we briefly asked if they had noticed
the kiosk. One family of 4 tried to use it but found it incomplete with a small amount
of information. That was expected since it was a prototype.

There is a potential bias that guests are usually grouped by 2, 3, or 4 people, and
their opinions are not independent since they are a couple or family. The individual
answers are hard to count. If one group answered yes, the whole group was counted
as yes since it takes only one person to spread all the travel information between his
companions.

Highlights from interviews: The guests seem to like the kiosk, especially the younger
generation. The interaction rate was not as high as expected but sufficient to try the
idea. The structure of displayed information (general travel information and trips)
seemed to fit the guest’s needs

14

. 5.3 Info Website User testing

5.3 Info Website User testing
. Measure guest satisfaction with information received from the hospitality provider.. Decide if an information website should be developed.

Setup
Like the first experiment, a high fidelity prototype was designed with similar com-

ponents, but further information about the accommodation was added.
A link to the prototype was added to the invitation letter sent to the new orders.

Unfortunately, Figma does not have simple built-in tools for measuring prototype in-
teraction. Option two was to wrap up the prototype in HTML iframe and hook up
google analytics. However, I defaulted to asking guests on arrival.

Potential biases

. The website was very simple and did not contain all information that could be pro-
vided.. The prototype was not that interactive for the guest to draw their attention

Results
The results are hard to estimate since they are measured in an online environment,

and there is a time interval between the view of the online link and interviewing the
guests. From our previous experience, we know that guests do not read much informa-
tion from emails we send them.

We sent 10 links to the online kiosk to the weekend guests. On arrival, two couples
found said they displayed the link; however, there was not much information. The rest
did not notice.

15

5. Product Idea Validation .

Figure 5.1. High fidelity prototype for website and kiosk user testing

16

Chapter 6
Available Technology

6.1 Web Frameworks

6.1.1 Spring Boot

Spring Boot makes it easy to create stand-alone, production-grade Spring based Appli-
cations that you can run without much configuration. Spring Boot extends the Spring
framework (Build system and dependencies), eliminating the boilerplate configurations
required to set up a Spring application. Spring or Spring Boot has been an industry
level standard for more than a decade, initially released in 2004. It is a very mature
framework. There are lots of examples and excellent documentation.

Spring Boot claims to be a very productive framework1. The configuration, setup,
and maintenance cost is relatively low due to the tremendous support from other ven-
dors. Spring has many tools and extensions to cover all needs for a standard application.
It is a Java Virtual Machine framework and even has support for Kotlin.

Compared to Ktor where all package management is done in Kotlin, the package and
dependency management in spring boot could be troublesome2. Sometimes requiring
XML configuration files which can be hard to manage.

The biggest challenge many developers face when using Spring Boot is the lack of
control. Everything is preconfigured; there is a much higher cost in implementing a
feature if the programmer needs something extra.

6.1.2 Django

According to their website, „Django is a high-level Python web framework that encour-
ages rapid development and clean, pragmatic design. Built by experienced developers,
it takes care of much of the hassle of web development, so you can focus on writing
your app without needing to reinvent the wheel. It’s free and open source.“[13] The
framework relies on the traditional model-view-controller (MVC) architecture.

The main advantage is its maturity; Django has been in development since 2005. It is
effortless to use, and most general problems are solved and integrated into its standards.
Python programming offers many libraries, from data science to server maintenance.

Python is not JVM compatible; hence, it is unsuitable for projects where a sub-
stantial part of the shared codebase can be reused in developing an Android or Kotlin
Multiplatform Mobile application. Nevertheless, it is still a valid option despite its
possibly higher maintenance cost. It is much easier to manage a less diverse codebase
from a project cost perspective.

1 https://spring.io/why-spring Why Spring?
2 https://docs.spring.io/spring-boot/docs/current/reference/html/howto.html#howto.

application.troubleshoot-auto-configuration Troubleshoot Auto-configuration

17

https://spring.io/why-spring
https://docs.spring.io/spring-boot/docs/current/reference/html/howto.html#howto.application.troubleshoot-auto-configuration
https://docs.spring.io/spring-boot/docs/current/reference/html/howto.html#howto.application.troubleshoot-auto-configuration

6. Available Technology .
6.1.3 Ktor

Ktor is a lightweight yet extendable framework developed by JetBrains for its products
made public in late 2018. The framework is built in Kotlin programming language and
harnesses its newest features, such as kotlinx serialization and coroutines. Paralyzation
and asynchronous computing is built into all of its components.

Despite its nice appearance and corporate backing, there are many drawbacks. The
framework is not yet very mature and lacks any standards compared to Spring. The
current version (2.0.0) has no official support for dependency injection and database
engines. Although with some additional work and third-party plugins and libraries, it
is possible to provide those features. These features are expected to be integrated into
the next major release. The documentation is well written, though it lacks complex
examples.

The framework excels at the simplicity of defining routes and extensibility. The flow
of network requests is designed in a pipeline design pattern. It is easy to hook any
middleware, validation, or custom logic into the flow.

Many of the most used plugins are provided out of the box by JetBrains, such as
Authentication (JWT, OAuth, Basic). The relative abundance of plugins makes the
development of a product quite fast.

Ktor is not just a server-side framework. Standard features such as handling and
parsing requests and API calls are extracted to the separated module and can also be
used on the client. It is extremely useful in mobile development and KMM (Kotlin
Multiplatform mobile). If there is a plan to develop a native mobile app (Android,
iOS), Ktor is a valid option.

6.2 Database Storage Engine
Database model and underlaying database engine heavily influence the type of archi-
tecture in the application and vice versa. We need to consider the kind of data, how the
data is used and queried, and what kind of application we are developing (real-time,
long term storage, information critical).

The domain model conceptualizes the internal connection between different business
entities in a given domain. The critical role in application development is choosing or
developing a database compatibility and abstraction layer. The easier the abstraction
layer is to use and the more flexible it is, the faster the development of the application
will be. These are often contradictory properties.

In computer science, ACID is a set (atomicity, consistency, isolation, durability)
of properties that guarantee data validity at any given time. The ACID property is
mainly tied to database transactions. These are robust guarantees, which may slow our
application. There are valid cases where we can omit them. Some NoSQL databases
trade the performance gain over consistency[14].

6.2.1 Scaleability

The fundamental question we need to ask when building the application is the expected
database load and the company’s growth rate. The bottleneck will most likely be the
storage engine and data accessibility considering the typical commercial applications
focused on users and data management.

Most database engines are well tuned in their default settings - single node, no parti-
tioning. Scaling too early can lead to a much more significant development cost without

18

. 6.2 Database Storage Engine

focusing on core user features that bring the product the most value. Nevertheless, the
model should be prepared for future optimization and scaling.

. Multiple nodes: Most of the state of the art databases offer multi node database
replication. The data is replicated in multiple nodes and synchronized depending on
the configured policy. This gives us greater fault tolerance. Applications emphasizing
reading over data writing can boost performance since the read queries are distributed
to multiple nodes.. Horizontal partitioning: It is beneficial when there are too many data records in
a table. The table is split horizontally by rows in the SQL world, usually by some
aggregate key, a region.. Vertical partitioning: Very similar to the Horizontal Partitioning but the data is
split vertically. One data record is divided into two records. For example, we strip
low accessed big data like bio from the username and password, making the first
table smaller, thus allowing the query to perform faster logins.

6.2.2 Document Databases
A document-oriented database is a storage system designed to store, retrieve, and
manage semi-structured data. The semi-structured data model is a model with no
clear separation between schema and data.

Advantages:

. Related data but with different schema can be stored together.. Querying relations ships in relational databases is a costly operation. Often, a join
table is needed for more complex relationships such as n:m. The Query document
can internally store this relation with its data, thus allowing it to query faster join
data.. The schema can easily change - beneficial for fast development iteration where the
product specification is not precise initially.. The storage format often resembles the communication interface output format. The
same parser can serialize database entities in different communication formats.

Disadvantages:

. Since the schema is volatile, consistency might suffer.. Compared to relation databases, fewer constraints on data attributes. The applica-
tion must validate the data.

6.2.3 Relational Databases
Relational databases are based on a relational model. The model consists of tuples
(data) and relations (connections) between the tuples. The definition of a tuple is
fixed. In an implementation, we use tables that hold identical data records and are
connected via primary keys. Since the schema is fixed and the types of individual
fields in the table are known ahead, the database engine performs validation upon any
modification, thus increasing the data consistency.

The relational databases are usually tuned to ACID properties comper to NoSQL
databases where the BASE is prefered. Transaction handling is well implemented and
offers strong guarantees.

19

6. Available Technology .
Advantages:

. In applications where strong consistency is needed, relational databases are a great
choice due to their focus on schema validation.. There are many industry standards and libraries written for RBDMS which can speed
up the development.. Almost all frameworks have integrations to the most used relational databases: Post-
greSQL, Mysql, MS SQL.

Disadvantages:

. Any changes to the scheme are a significant disruption to the application operation.
Usually, migrations must be performed.. If the nature of data is heterogeneous Relational databases are not appropriate.

6.3 Web Frontend Architecture

There are many ways to implement the frontend of an application. This field is rapidly
developing. Moreover, we need to pay close attention to which technologies will allow
us to be the most efficient and productive.

Applications have become more complex with an accent on user experience. Applica-
tions are more interactive than ten years ago, and users expect easy-to-use applications
that are anything but simple to develop. Solutions to those problems might bring
caveats in another field, such as SEO support in single-page applications, which might
be interactive but not well optimized for search engines. Implementing an application
without any framework is laborious and error-prone. There is a lot of duplicate code,
and it is hard to manage the project.

When choosing a frontend web technology, we need to ask about the purpose of the
application.

. For an internal application, we do not need a framework optimized for SEO.. Is there a company preference for a framework.. How well is the framework supported, and how big a community does it have.. Are there any critical technology caveats, such as not supporting certain features?

6.3.1 Server Rendered

Server rendering means that the client will receive a complete minified version of a
given website upon each web request. The server has a much higher workload than
client rendered web applications since it must prepare the data for the website and then
render it. It also requires higher internet traffic because the whole page is transferred
every time.

6.3.2 Client Rendered

Improvements in JavaScript allowed us not just to make applications interactive and
render them entirely on the client-side. The frontend is split into components which
drastically simplifies the development. These frameworks offer many community plug-
ins, and the closer to the web they are, the better they can adjust to the browser.

20

. 6.4 API Design

6.3.3 Hybrid Approach
As discussed before, SEO optimization is a dealbreaker for some applications. Luckily,
some meta frameworks, such as Nuxt for Vue and Next for React, offer the best of both
worlds. They render the first page on the server or even prerender it and cache it. The
page is served to the client and hydrated. Hydration means binding the component
build system and event logic to the already rendered HTML tree.

6.3.4 React
React is a library developed by Facebook for creating reactive web applications. Having
a company of this size back the project is a tremendous benefit since the open-source
project has ground in commercial business and thus has the resources to maintain and
extend the features. Along with Vue, they create an industry standard. According to
the state of the JavaScript survey 2021[15], React is the most used framework. React
is used by Airbnb, Slack, and Instagram.

The most significant benefit of React compare to other frameworks such as Vue
or Angular is its capability to develop multiplatform mobile apps. However, this is
beneficial only for projects planning on developing mobile apps.

Highligths:

. More packages: React has more packages on NPM than Vue 190k to 60k.. Backed by Facebook: Corporate backing brings trust into the project’s stability and
scalability.. Crossplatfrom: React can be used to develop mobile applications.

6.3.5 Vue
Vue is solely an open-source project backed by its community. It was created as a reac-
tion to React disadvantages. According to the state of the JavaScript survey 2021[15],
Vue is the third most used framework behind React and Angular. Companies that use
Vue.js are Grammarly, Upwork and Nintendo.

Highligths:

. Easy to learn: Development with Vue.js is slightly faster than with React. Vue feels
simple a has a narrower learning curve3.. Concise documentation: Vue.j has Great documentation with extended comunity.. Prototyping: Vue defaults to two way binding. It can easily manage many inter-
actions. It is easy to set up and deploy and aims to be lightweight, thus allowing a
developer to make prototypes quickly.

6.4 API Design
Applications consist of multiple different technologies and components to compose the
final product, and they all have to communicate with each other. Most modern web
applications expose APIs that clients can use to interact with the application since
the backend and frontend are entirely separate. According to MDN, there are two key
concerns when designing the APIs.

3 https://www.altexsoft.com/blog/engineering/pros-and-cons-of-vue-js/

21

https://www.altexsoft.com/blog/engineering/pros-and-cons-of-vue-js/

6. Available Technology .
. Platform independence: „Any client should be able to call the API, regardless of

how the API is implemented internally. This requires using standard protocols, and
having a mechanism whereby the client and the web service can agree on the format
of the data to exchange.“[16]. Service evolution: „The web API should be able to evolve and add functionality
independently from client applications. As the API evolves, existing client applica-
tions should continue to function without modification. All functionality should be
discoverable so that client applications can fully use it.“[16]

6.4.1 REST
Representational State Transfer (REST) is an architectural technique for designing web
APIs. REST APIs are designed for accessing resources, any object, data, or service on
the web through a URI via standard protocols, most likely over HTTP methods.

. GET: means to retrieve some resources for a given URI. URI is usually structured in
parts or has optional parameters to identify more specific resources.. POST: creates or updates data on a given URI. POST has an additional input body
that can carry the new or newly updated resources.. PUT: is meant to create or replace a given resource by the PUT input body.. PATCH: is for performing a partial update.. DELETE: removes a resource on a specific URI.

OpenAPI / Swagger has become standard for designing REST APIs. OpenAPI is
a resource description format that states the resource schema and URI parameters for
resource manipulation.

Disadvantages:

. No clear standard: The lack of any clear standard allows API authors to bend or
adjust their REST APIs to their visions. Therefore APIs differ, especially in using
POST, PUT, and PATCH.. Data fragmentation: REST by design separates resources into different URIs. How-
ever, this is not how applications usually display data. Applying filters or querying
nested data can only be performed by making multiple calls and combining the data,
which is ineffective.

Advantages:

. Simplicity: Setting up rest API is a straightforward thing since almost all technolo-
gies support this type of communication.. Tooling: There are numerous tools to standardize API development, such as Swag-
ger.

22

. 6.4 API Design

6.4.2 GraphQL
„GraphQL is a query language for APIs and a runtime for fulfilling those queries with
your existing data. GraphQL provides a complete and understandable description of
the data in your API, gives clients the power to ask for exactly what they need and
nothing more, makes it easier to evolve APIs over time, and enables powerful developer
tools.“[17]. According to the state of JavaScript, the popularity of GraphQL is rising[18].

GraphQL was released in 2012 to solve the problem of querying nested data and its
manipulation. Instead of maintaining multiple endpoints as in standard REST API,
GraphQL exposes only one entry point for GraphQL queries and another for GraphQL
Schema definition. GraphQL allows the programmer to query any data from the static
schema in one request - applying parameters and filters. Managing one endpoint for
data access is much more scaleable.

Advantages:

. Fetching data with a single API call: In GraphQL, data is linked together; a client
can query those links by a GraphQL Query language.. Smaller message size: GraphQL allows you to specify only the object fields that
you need, thus making the response smaller.. Document Databases: GraphQL blends nicely with document databases. Usually,
the scheme is autogenerated from Backend entities, so adding one field to the doc-
ument database will propagate to the GraphQL schema definition since the query
language, and the document database is based on semi-structured schema.

Disadvantages:

. Granularity of authentication: In regular rest API, multiple endpoints could support
different types of authentication. In some implementations, exposing parts of the
schema to the public and keeping others under authentication is hard to implement.

23

Chapter 7
Backend Architecture

This chapter describes the decisions behind choosing the architecture for the travel-
info.cz project. We will summarize critical points from the collection of requirements
and combine them with future plans for this project.

7.1 Requirements

The minimum viable product described in the thesis is straightforward and does not
require advanced approaches to architecture. In the assignment of this thesis is rec-
ommended to use event-driven architecture. The reasoning behind this was that the
application was supposed to hook on Booking.com or the new hotel website order sys-
tem. Unfortunately, the requirements to use Booking.com’s API are not in Penzion U
Veselých capability to comply. The main architecture requirements from the point of
MVP are:

. Support CRUD operation on multiple entities. Support image database. API for remote electronic kiosk. API for frontend. Up to 60 daily active users

If proven sustainable, the project aims to collect travel advice from hotels and publicly
offer travel tips with advertising:

. Exponentially higher load. Multiple domains — travel tips, orders, advertising. Emphasis on data consistency. Hundreds of users

7.2 Possible Approaches

Likely, the focus of MVP will change in the future, and its architecture will have to
adjust. The higher the granularity of low coupled modules, the easier the application
development will be. From the point of MPV iterative improvement, the application
must support continuous integration — introducing changes quickly and automatically.

„Every architectural decision should be testable and should have a test written to
accompany it. If a decision is not testable, then it is merely an opinion or a suggestion
and not a decision.“ [19] Iterative software development brings the advantage of reactiv-
ity to project challenges. However, it puts more strain on ensuring already developed
software quality since multiple refactoring is involved.

24

. 7.2 Possible Approaches

7.2.1 Event-Driven

„Event-driven Architecture (EDA) is a software architecture paradigm promoting the
production and consumption of events.“[20]. The main purpose of this architecture is
to usually solve the real-time collection of data through event processors such as Kafka.
From Kafka’s documentation „Technically speaking, event streaming is the practice of
capturing data in real-time from event sources like databases, sensors, mobile devices,
cloud services, and software applications in the form of streams of events; storing these
event streams durably for later retrieval. “ [21]

In our example, it would be hooking into Booking.com’s new order event stream and
issuing two more events:

. Welcome email: A general welcome email would be sent to the customers with an
onboarding site upon new orders.. Before arrival email: Guests would receive an email with the essential information
two days before arrival. It would require an email job scheduler such as JobRunr
[22].

However, this will not be implemented due to legal challenges in getting access to
the booking.com API.

7.2.2 Microservices

„Microservices are independently releasable services that are modelled around a busi-
ness domain. A service encapsulates functionality and makes it accessible to other ser-
vices via networks—you construct a more complex system from these building blocks.
“ [23]

Each service encapsulates its small domain. The main goal of splitting the monolithic
application is not the performance gain. The monolith can be distributed to multiple
nodes, and if properly designed, committing database transactions should block only a
portion of the whole database. The goal is to bring maintainability and higher separa-
tion of concerns to each service, leading to faster adoption of more modern technologies
and more rapid improvement to the service itself. However, the price is the higher cost
of operation. If we look at some advantages taken from [24]:

. It tackles the complexity problem by decomposing the application into a set of man-
ageable services that are much faster to develop and much easier to understand and
maintain.. It enables each service to be developed independently by a team that is focused on
that service.. The microservices architecture enables each service to be scaled independently.

7.2.3 Monolith

The monolith approach is the most common approach despite its negative connotation.
Most applications and libraries are designed to be used in a monolithic environment.
The application is designed to be one big unit. The unit can be modularised, but
there are no network barriers between modules internally. It significantly simplifies
development for a small project where the complexity of the whole ecosystem does not
bring maintenance and refactoring issues. Advantages are:

. Simple to develop. The lack of network communication between internal modules
significantly simplifies adding new features and refactoring.

25

7. Backend Architecture .
. Simple to deploy. The deployment does not require any cooperation with other

services. The application is usually packaged in a single container.. Simple to scale horizontally by running multiple copies behind a load balancer.

Over time more domains are built into the monolith as the application and business
grow. Introducing any internal changes that do not change the application’s behaviour
is challenging since the modules are usually highly coupled. Internal changes include
changing the underlying database engine or event processor. Disadvantages are:

. Any minor change requires redeploying of the whole application.. As the size, complexity and number of internal modules increase, it puts more strains
on the individuals to correctly add or refactor code.. Possible increase in technical debt. Monolith is tight down to one technology. If
the technology becomes unmaintained or there are better alternatives for solving the
same challenges, it is tough to introduce them to the monolith.

7.3 Monolithic Approach
As said in 7.2, this project has two stages. The goal is to propose an architecture that
will cover both stages or will be able to transform from one stage to the other.

As for the first stage, a monolithic approach would be ideal since the project is small
and very few requirements would need a special kind of architecture. The amount of
users is very low. If authentication and user management are excluded, the data model
bounds are within one domain (Travel information).

The second stage of this project will likely require more domains (Hotel management,
Travel information, Advertisement,...) to be integrated. Since the first stage covers
only one domain with a few exceptions in the future, it can become a single service
for managing travel information, and the user and hotel management can be extracted
into other services.

However, we need to pay attention to „ A monolith haphazardly decomposed into a
handful of microservices could actually leave you in a worse state compared to where
you started. We even have a term for that: a distributed monolith. “[20]. This problem
is solvable since the monolith at its core is a single service.

Ktor web framework was chosen as the backbone for the application’s monolith back-
end. There are two key advantages when using Ktor. First, Ktor is built using Kotlin,
and with Kotlin, we can create multiplatform projects meaning we can reuse the same
codebase for both frontend and backend. The second reason is that a Kotlin-GraphQL
library from ExpediaGroup immensely simplifies the definition of GraphQL schema
using Kotlin classes.

GraphQL, in our situation, is preferable over standard REST endpoints due to the
simple integrability with MongoDB. Document databases are composed of nested ob-
jects. GraphQL allows us to query those nested relations defined on the data layer
without creating many different endpoints for different needs.

7.4 Layered Architecture
There is no predefined structure for Ktor Projects. Ktor is a very simple yet extensible
framework and gives the author the advantage and the responsibility to define the
structure of his application. Our project follows standard layered architecture.

26

. 7.4 Layered Architecture

1:nHotelEntity TripEntity

1:n

TripCategoryEntity ImageEntityTravelInfoEntity

MongoDB Persistance Layer

1:n

HotelDAO ImageDAOTripDAO TravelInfoDAO

Data Access Layer

travel_info

HotelQL

categories

TripQL

trips

TripCategoryQL TravelInfoQL

HotelMutation
- modifyTripCategories
- modifyHotel
- registerHotel
- login

TravelInfoMutation
- upsertTravelInfo
- deleteTravelInfo

TripMutation
- upsertTrip
- deleteDeleteTrip

HotelQuery
- searchHotels
- deleteDeleteTrip

TripQuery
- searchTrips

REST API
 - /img:id

GraphQL Entities

GraphQL

GraphQL API
 - /graphql

HTTP Layer

Depends on layer

Resolves nested
GraphQL query

trips

MongoDB
Foreing Key

1:n

Layer boundary

 NewHotel
Service

Authentication
Service

Image
Service

Figure 7.1. Layered architecture of the application.

7.4.1 Data Layer

The data layer was implemented using KMongo1. It is an easy-to-use wrapper around
Mongo DB Java driver, supporting Kotlin asynchronous programming using suspend
functions. It is convenient since the underlying framework is built on Kotlin Coroutines
(suspending functions). It also features kotlinx.serialization2, which provides re-
flectionless serialization and deserialization of Kotlin’s data classes from and to BSON.

The data Layer provides most atomic MongoDB operations such as find, findMany
as well as helper functions for working with entities, for example, save(e: Entity)
save(e: Entity).

1 https://litote.org/kmongo/ KMongo - a Kotlin toolkit for Mongo
2 https://kotlinlang.org/docs/serialization.html Introduction to kotlinx.serialization

27

https://litote.org/kmongo/
https://kotlinlang.org/docs/serialization.html

7. Backend Architecture .

TripCategoryEntity

PK val _id: String

name: String

FK trips_ids: List<String>

HotelEntity

PK _id: String

hashed_password: String

hotel_name: String

FK logo_img_id: String

FK intro_img_id: String

email: String

accommodation_text: String

contact_phone: String

contact_email: String

official_website: String

FK trip_categories: List<TripCategoryEntity>

TripEntity

PK _id: String

FK hotel_id: String

title: String

text: String

FK img_ids: List<String>

tags: List<String>

ImageEntity

PK _id: String

binary: Binary

TravelInfoEntity

PK _id: String

FK hotel_id: String

title: String

text: String

Figure 7.2. ER Model diagram.

7.4.2 Data Access Layer
The data access layer builds on the data layer by providing simple business queries. This
layer validates the most significant application constraints, such as data ownership and
prevents cross update operations. Neither Ktor nor KMongo provides a standard way
to create DAOs. The most efficient is to create a single DAO component for each entity.
Through dependency injection, all DAOs are available anywhere in the application.

HotelDAO
- getHotel
- getHotelByEmail

ImageDAO
- getImage
- putImage
- putImageBase64
- deleteImage

HotelTravelInfoDAO
- getHotelTravelInfo
- getTravelInfo
- upsert
- deleteInfo

TripDao
- getTrip
- getCategories
- upsertTrip
- deleteTrip

Figure 7.3. A sub list of operations on DAO objects.

7.4.3 GraphQL API
The GraphQL schema is depicted in the diagram 7.1. It was implemented using
GraphQl Kotlin library from Expedia Group3. It is a standard implementation without
any significant architectural challenges. The only problem was how to map GraphQL
entities to database entities nicely, which is discussed in ??.

3 https://opensource.expediagroup.com/graphql-kotlin/docs/

28

https://opensource.expediagroup.com/graphql-kotlin/docs/

. 7.4 Layered Architecture

7.4.4 HTTP Layer
Takes graphQL request, parses it, asks the GraphQL for the response, serialize it and
sends it to the client. This layer also provides authentication for data mutations.

This layer is mostly about configuration. For additional details, visit provided links.

. CORS 4: Allows HTTP post with Authorization header for CORS request from
Vue frontend.. Authentication 5: Provides JWT authentication from email and password login.. GraphQL context: Object with a map containing authorized user and other essential
information for executing GraphQL query.

4 https://ktor.io/docs/cors.html How to set up CORS for Ktor.
5 https://ktor.io/docs/jwt.html How to set up JWT for Ktor.

29

https://ktor.io/docs/cors.html
https://ktor.io/docs/jwt.html

Chapter 8
Implementation Details

The source code can be found here: https://gitlab.fel.cvut.cz/veselj57/
diploma-thesis.

8.1 Backend

8.1.1 GraphQL Entity Mapping

One of the main challenges was developing an internally simple GraphQL and Mon-
goDB connection, which would be easy to maintain. Using the exact entity definition
for GraphQL and MongoDB is effortless, but that brings numerous minor problems of
hiding unwanted fields in public API, such as password hash. Separating those enti-
ties brings more boilerplate code but better architecture and separation of concerns.
Another problem is the need to map DB entities to API ones.

Entity mapping is done using the Kotlin extension functions 1. It significantly sim-
plifies the mapping code and allows us to put the mapping to the GraphQL entity file.
With the GraphQL entity and the mapping in the same place, we do not pollute the DB
entities with code from other layers. In the following example, we can see the definition
of GraphQL entity with relation and mapping. The function toGQL in figure 8.1 shows
the mapping between DB and QL entity.

@GraphQLName("TripInfo")
class TripInfoQL(

var _id: String,
var hotel_id: String,
var title: String?,
var text: String?

): KoinEntity {
suspend fun hotel(dfe: DataFetchingEnvironment): HotelQL? {

return get<HotelDAO>().getHotel(hotel_id)?.toGraphQL(dfe)
}

}

fun TravelInfoEntity.toGQL(dfe: DataFetchingEnvironment): TripInfoQL {
return TripInfoQL(_id, hotel_id, title, text)

}

Figure 8.1. Defining GraphQL entity from DB entity.

1 https://kotlinlang.org/docs/extensions.html

30

https://gitlab.fel.cvut.cz/veselj57/diploma-thesis
https://gitlab.fel.cvut.cz/veselj57/diploma-thesis
https://kotlinlang.org/docs/extensions.html

. 8.1 Backend

8.1.2 GraphQL Authentication

JWT2 is used to carry authentication between the frontend and backend. Because
GraphQL uses one route for queries and mutation, authentication is optional to prevent
redirects on the HTTP layer. Nevertheless, it is evaluated, and the result is passed to
GraphQL.

Two factors must be checked to prevent cross update of data, for example, inserting
a trip into another hotel. The first one is successful authentication, and the second one
is verifying the ownership of the resource to the authenticated entity.

„GraphQL directives can be used to transform the schema types, fields and arguments
as well as modify the runtime behavior of the query (e.g. implement access control,
etc). Common use cases involve limiting functionality based on the user authentication
and authorization.“ [25]

All queries are publicly available, but mutations are protected with a directive
@AuthHotelDirective it checks whether the user was successfully authenticated when
processing the field with this directive. Lastly, in the implementation of the mutation,
its resource is checked against the authenticated user.

The following example 8.2 shows the injection of authentication into DataFecher
of the protected resource. A custom GraphQL exception handler then catches the
unauthorized exception. The injection works like a proxy design pattern, mediating
the data retrieval.

val originalDataFetcher: DataFetcher<*> = environment.getDataFetcher()

environment.setDataFetcher { dfe ->
val role = dfe.graphQlContext.get<GQLRole>(ROLE_KEY)

if (role !is GQLRole.Hotel)
throw UnauthorizedGraphQLRequest()

originalDataFetcher.get(dfe)
}

Figure 8.2. Extending data fetcher with authentication.

8.1.3 Input Validation

There are multiple options for backend validation. The first is constraining the field by
adding directives3 such as @NotBlank. It fits into the GraphQL ecosystem but cannot
be reused in our multiplatform client.

The other option is to put the validation into the entity’s constructor and adjust the
GraphQL error handling. GraphQL, when creating entities, throws a reflection error
despite whatever the cause. If a ReflectionExcetion occurs, we can look for the cause
in the stack trace and nicely print the error output and ignore the refection error.

The following example 8.3 shows the constructor of TripQL entity which performs
the validation.

2 https://ktor.io/docs/jwt.html#configure-jwt Ktor JWT configuration.
3 https://github.com/graphql-java/graphql-java-extended-validation Extended Validation for

graphql-java

31

https://ktor.io/docs/jwt.html#configure-jwt
https://github.com/graphql-java/graphql-java-extended-validation

8. Implementation Details .
init {

require(title.length < TITLE_LENGTH)
require(text.length < TEXT_LENGTH)
imgs.forEach { require(it.length < IMAGE_LENGTH) }
tags.forEach { require(it.length < TAG_LENGTH) }

}

Figure 8.3. Validating multiplatform entity.

8.1.4 Storing Images
In our application, we need to store images for trips and hotels. The standard choice is
to save them on disk and serve them using a web server. However, introducing second
storage would make harder the application deployment and backup. We can leverage
Mongo DB’s ability to store raw binary data. There are two options, store files using
GridFS and create a document with binary data. „If your files are all smaller than
the 16 MB BSON Document Size limit, consider storing each file in a single document
instead of using GridFS. You may use the BinData data type to store the binary data.“
[26]

The second problem is transferring the files through GraphQL. GraphQL is purely
text-based. The only option is to encode the binary image into a base64 string. How-
ever, it increases the file size by 33%[27]. The retrieval of the image is done using
standard HTTP image transfer done by Ktor public route /img/{image_id} as de-
picted on the picture 8.4.

Figure 8.4. Image persistence diagram.

8.2 Multiplatform client
Programming multiple client libraries for different languages is expensive and error-
prone, for example, if a field is present in the JS variant but not in the JVM one.
Using loosely typed languages has some advantages, especially since there is no need
to define DTOs (Data Transfer Objects). However, on the other hand, a programmer
must always refer to the documentation instead of using IDE hints and error warnings
about types.

This effort aims to generate a client library from the GraphQL definition, which is
code-first. The opposite approach is to generate4 java DTOs from the schema first
approach.
4 https://github.com/graphql-java-generator/graphql-maven-plugin-project GraphQL in a

schema first approach.

32

https://github.com/graphql-java-generator/graphql-maven-plugin-project

. 8.2 Multiplatform client

The model is composed of all unit actions the GraphQL specifies. GraphQL muta-
tions are easy to model; they have clearly defined input. GraphQL queries are hard
to model and unify under OOP. We can either query more data to bind all subentities
or increase the granularity of atomic top-level queries and make more calls. The client
library choses the first option.

The model contains these actions: registerHotel, login, modifyCategories,
upsertTrip, upsertTravelInfo, getHotelData.

This library is not only for client implementation but can be used in integration
testing; more on this in section 8.2.4.

8.2.1 Kotlin Multiplatform

„Support for multiplatform programming is one of Kotlin’s key benefits. It reduces time
spent writing and maintaining the same code for different platforms while retaining the
flexibility and benefits of native programming.“ [28]

We can write standard Kotlin code, which is then compiled to other platforms, in our
case, to JVM for GraphQL testing and Typescript for frontend development. Kotlin
native is still very experimental, and more stable support for JavaScript / TypeScript
is in active development.

8.2.2 Kotlin Symbol Processing

„Kotlin Symbol Processing (KSP) is an API we can use to develop lightweight compiler
plugins. KSP provides a simplified compiler plugin API that leverages the power of
Kotlin while keeping the learning curve at a minimum.“ [29]

KSP is necessary because Kotlin compiles data classes to JavaScript classes, but we
need TypeScript interfaces. Our model is defined in data classes; they are needed for
a JVM client. KSP compiler plugin generates interfaces with the same fields from the
data classes. Those interfaces are then correctly compiled into TypeScript interfaces
for the JavaScript module. Example of compiled DTO object 8.5.

8.2.3 Compiling DTOs

The initial intention was to generate the schema by analyzing the definition of GraphQL
entities. Unfortunately, I could not configure the Gradle Kotlin Multiplatform project
to both run the application and generate the code because, in some cases, it would
bring cyclic dependency to the project.

. Common DTO definition: For each GraphQL type, a Kotlin data class was defined
in the common source in the multiplatform project. data class is needed to provide
kotlinx serialization support.. KSP generation A compiler plugin inspects the data classes and creates an interface
with the same properties just for JS module.. Multiplatform compiling: With the correct Kotlin code in all modules, the compiler
can now compile the modules.

33

8. Implementation Details .

a) b)
Figure 8.5. Transformation of Kotlin data class a) using KSP to TypeScript b).

8.2.4 Client Library
The JVM module also includes a client HTTP library that models unit ac-
tions of GraphQL. The model contains these actions: registerHotel, login,
modifyCategories, upsertTrip, upsertTravelInfo, getHotelData

The following example 8.6 shows the mapping of the upsertTrip mutation to an
object-oriented approach. It is a snippet from class HotelActions. The OOP approach
significantly simplifies integration testing.
suspend fun modifyCategories(

list: List<TripCategoryDTO>
): List<TripCategoryDTO> {

return graphQLRequestTyped(
query = "mutation (\$categories: [TripCategoryInput!]!) {
modifyTripCategories(categories: \$categories){

_id name trip_ids
}

}",
topLevelName = "modifyTripCategories"

){
put("categories", json.encodeToJsonElement(list))

}
}

Figure 8.6. Multiplatfrom client action example.

8.3 Frontend
This section briefly summarizes frontend state management, UI optimization for differ-
ent screens, screenshots of the final product, and highlights from the actual implemen-
tation. The frontend comprises mainly of standard Vue 3 code which is well described
in the documentation5; therefore, any Vue specific problems are not included.

8.3.1 State Management
Pinia6 is the recommended state management package for Vue. We will focus on the
network communication since the actual state management is done by Vue Framework7.
The state was split into two modules:
5 https://vuejs.org/guide/introduction.html Introduction to Vue
6 https://pinia.vuejs.org/introduction.html Introduction to Pinia
7 https://vuejs.org/guide/scaling-up/state-management.html Introduction to Vue state manage-

ment

34

https://vuejs.org/guide/introduction.html
https://pinia.vuejs.org/introduction.html
https://vuejs.org/guide/scaling-up/state-management.html

. 8.3 Frontend

. Data module: manages travel data that are displayed on the site. The entities reflect
the entity relationship diagram 4.2.. Hotel data. TripCategories. Travel information. Trips. User module: handles authentication and data editing. Data in this module is pre-
served over the browsing session using window.sessionStorage. Authentication. Authenticated user

The data module is initialized with one GraphQL query containing all the data the
application will need for a visiting guest user on the startup. This situation is depicted
in diagram 8.7 before the User Browsing section.

The user module holds the authenticated user (admin) and JWT token. If a token
is present, the whole site is set into an administrative mode.

The following diagram 8.7 shows the editing of a trip using a popup B.1. The popup
needs additional information, such as which trip categories are available. Before the
dialogue is displayed, the required data is fetched from the backend. Most of the other
popups follow this schema.

Figure 8.7. State managment of EditTripDialog

8.3.2 Navigation
This section describes the thinking behind choosing UI/UX approach. Designing a
good quality UI / UX is complex and could be extracted into separate research. The
page structure follows the single page requirement. This structure keeps the consistency
between the kiosk and the onboarding website:

. Kiosk: Kiosk navigation must be straightforward and shallow. Users do not spend
much time in front of kiosks searching for nested information, for example, mall
navigation kiosks. Popups are ideal because there are no forward and backward
navigation buttons in the kiosk, only a touch screen.

35

8. Implementation Details .
. Onboarding web: There are two cases to cover, mobile and desktop versions. Popups

are not a good option for the desktop version and especially mobile. Content in our
application is meant to be very simple; thus, displaying each travel info or activity
on another page breaks the UX flow. The user would have to navigate from page to
page to get a small amount of additional information. For MVP, navigation will be
implemented in popups; it is likely to change in the future.

Following HTA diagram 8.8 shows which navigation actions a user can take on the
onboarding site depending on privileges.

display

Onboarding page

Dialog TravelInfo

Dialog Trip

redirect Login page

Dialog Edit Trip

Dialog Edit Travel Info

Dialog Settings

Dialog Add Category

visitvisit

Page hotel website

Admin access Guest access

Figure 8.8. HTA diagram of user interface.

36

. 8.3 Frontend

8.3.3 Onboarding Screen
The following screenshot depicts the onboarding site. There is contact information with
the brand logo, name and a link to the official website at the top of the page. It is
followed by rich text information about the hotel with an introduction image.

There is travel information in the middle of the page — The core advice for a guest
about the location and attractions. At the bottom of the page, there are switchable
categories with trips. By clicking on the category, the trips are replaced accordingly.

Figure 8.9. The onboarding page screenshot.

37

8. Implementation Details .
8.3.4 Trip Screen

This screen 8.10 shows a TripPopup, which opens after clicking on a trip in a category.
There is an introduction image and a small image gallery. The text can be edited in a
rich text editor.

Figure 8.10. Trip popup Screen.

38

. 8.3 Frontend

8.3.5 Touchscreen Kiosk
The following picture 8.11 shows the touch screen powered by Raspberry Pi. The
screen will be mounted on a wall.

Figure 8.11. Picture of the touchscreen kiosk.

39

Chapter 9
Kiosk - Hardware / Software

Buying a standalone kiosk without software is a matter of tens of thousands of Czech
crowns, which was not acceptable for the kiosk use. A much cheaper option is to buy
a regular Desktop PC screen and connect it to a mini PC such as a Raspberry Pi.
Hardware requirements are low except for running a single Chromium tab.

9.0.1 Screen
The main factors for the screen:

. Durability - The kiosk will be placed in a hallway, and frequent touching can damage
the touchscreen.. Low power consumption - The kiosk will run 16 hours a day.

The 22 ViewSonic TD2223 Screen was chosen due to its very affordable price and
big frame around the screen, which should protect it.

9.0.2 Computing Unit
There are several requirements the computing unit must meet:

. WiFi support - There is no ethernet outlet in the intended location.. Low power consumption - The kiosk should run 16 hours a day.. Easy cable management - There will not be any casing in the early prototype.. Linux - Linux is easily configurable as a kiosk.

An ideal mini PC was selected, Raspberry Pi 4. It is straightforward to use with its
distribution which provides compatibility to all its features should this project extend.

Another factor was power boot. The lack of a power switch allows plugging the mini
PC and the screen into a socket timer to control the operation time.

9.1 Operating System
A Raspberry Pi OS Lite was chosen as an underlying operating system because it
is bare bone Linux installed with all Raspberry Pi drivers. Manual installation of all
necessary software for the kiosk, such as the Display server, produces a much cleaner
installation.

9.1.1 Touch Screen Correction
The kiosk orientation is portrait. The screen is configurable to the portrait mode;
however, the touch screen did not adjust its orientation, and all inputs were upside down
and left and right switched. Since the Rasbien OS use X.org as a display server, The
Coordinate Transformation Matrix was set to compensate for the actual orientation
with a matrix composed of up and down and left and right rotation matrix.

xrandr -o right

40

. 9.1 Operating System

xinput set-prop "iSolution multitouch" \
'Coordinate Transformation Matrix' 0 1 0 -1 0 1 0 0 1

9.1.2 Autorun Configuration

We need to install chromium and a Linux display server:

sudo apt-get install --no-install-recommends xserver-xorg
x11-xserver-utils xinit xinput openbox chromium-browser

Next we need to set up an autorun script:

xset -dpms # turn off display power management system
xset s noblank # turn off screen blanking
xset s off # turn off screen saver

Remove exit errors from the config files that could trigger a warning
sed -i 's/"exited_cleanly":false/"exited_cleanly":true/'

~/.config/chromium/'Local State'

sed -i 's/"exited_cleanly":false/"exited_cleanly":true/;
s/"exit_type":"[^"]\+"/"exit_type":"Normal"/'
~/.config/chromium/Default/Preferences

Rotate screen to the right
xrandr -o right

Rotate the touch screen to the right
xinput set-prop "iSolution multitouch"

'Coordinate Transformation Matrix' 0 1 0 -1 0 1 0 0 1

Run Chromium in kiosk mode
chromium-browser --noerrdialogs --disable-infobars --kiosk

$KIOSK_URL --check-for-update-interval=31536000

Set kiosk website: sudo nano /etc/xdg/openbox/environment

export KIOSK_URL=https://example.com

Run script on user login: sudo nano ~/.bash_profile

[[-z $DISPLAY && $XDG_VTNR -eq 1]] && startx -- -nocursor

Remove the splash screen from raspberry: sudo nano /boot/config.txt.

disable_splash=1

Remove Linux startup screen by appending this to sudo nano /boot/cmdline.txt

consoleblank=1 logo.nologo quiet loglevel=0 plymouth.enable=0
vt.global_cursor_default=0plymouth.ignore-serial-consoles splash
fastboot noatime nodiratime noram

41

9. Kiosk - Hardware / Software .

9.2 Cost of Operation
The cost of operation is an essential factor. The screen has a typical consumption of
12.5W1, the Raspberry Pi 4.3W2 - Extended to a full year and 16 hours a day with a
price of 6 Kč kWh, makes around 700 Kč per year.

It is important to note that the product was supposed to be deployed on
Raspberry Pi. It is now deployed on a virtual private server on Wedos, which
costs 1200kč per year.

1 https://www.viewsonic.com/ap/products/lcd/TD2223 Screen power consumption.
2 https://www.pidramble.com/wiki/benchmarks/power-consumption RP pi power consumption.

42

https://www.viewsonic.com/ap/products/lcd/TD2223
https://www.pidramble.com/wiki/benchmarks/power-consumption

Chapter 10
Deployment

This chapter will describe deploying our minimum viable product to a Wedos virtual
private server as depicted on 10.1.

Originally this product was supposed to be fully deployed on the Rasberry Pi. How-
ever, the ISP provider did not offer us a public IP. The reason was to cut down the
costs to a bare minimum. With the VPS, there are no problems with performance and
bandwidth limitations.

Figure 10.1. Deployment diagram

10.1 Pipeline
Setting up a fast turnaround pipeline is essential for speeding up development. Every
action must be automated so that the developer can focus only on improving the appli-
cation. Since this project is hosted on the faculty’s GitLab, we can leverage GitLab’s
continuous integration pipeline and Docker infrastructure.

The GitLab’s pipelines run on GitLab Runner, a service hosted outside of GitLab.
The faculty offers a shared runner, but the waiting queue is too long — a custom shared
runner was set up on Wedos for this project. The runner was set up to run the pipeline
in a docker environment so dind image could be used. Dind is Docker image that can
be run in Docker. In this way, we can access Docker build tools in our pipeline.

Another pre requisition was a container registry to store our production images.
Gitlab offers this as well, but an application to SVTI is required, so I defaulted to using
Docker Hub.

10.1.1 Stages

. Build: This stage takes our project repository with backend and frontend source code
and builds appropriate docker images, and pushes them into the docker hub to be
used in the deployment stage.

43

10. Deployment .
. Job: Build frontend. Job: Build Backed. Deploy: This stage established an SSH connection to our deployment server. On the
server, pulls new images from Docker Hub and redeploys them using Docker Compose. Job: Deploy

10.2 Docker Images
The following two sections describe docker images 10.2, 10.3 used for deploying our
application.

10.2.1 Vue frontend
Deploying Vue.js has two stages the build stage and the deploy stage. in the first phase
Vue.js is built using Vite. The built code is copied into Nginx with configuration to
rewrite URLs to support browser history mode.

FROM node:lts-alpine as build-stage
WORKDIR /app
COPY package*.json ./
RUN npm install
COPY . .
RUN npm run build

production stage
FROM nginx:stable-alpine as production-stage
COPY --from=build-stage /app/dist /usr/share/nginx/html
COPY prod_nginx.conf /etc/nginx/nginx.conf
EXPOSE 80
CMD ["nginx", "-g", "daemon off;"]

Figure 10.2. Dockerfile for Vue.

10.2.2 Ktor Backend
Deploying Ktor has similar steps as Vue.js. First, Ktor is built with a shadow plugin,
which produces a fat jar with all dependencies in a single JAR using Gradle Docker
image. Then it is run with an open JDK image.

FROM gradle:7-jdk11 AS build
COPY --chown=gradle:gradle . /home/gradle/src
WORKDIR /home/gradle/src
RUN gradle :ktor:shadowjar --no-daemon

FROM openjdk:11
EXPOSE 8080:8080
RUN mkdir /app
COPY --from=build /home/gradle/src/ktor/build/libs/*.jar

/app/ktor-docker-sample.jar
ENTRYPOINT ["java","-jar","/app/ktor-docker-sample.jar"]

Figure 10.3. Dockerfile for Ktor.

44

. 10.3 Docker compose

10.3 Docker compose
The actual deployment is done using a plain Docker Compose file. The file diagram
is depicted on figure 10.4. It includes three services: Mongo Database, Ktor Backend,
and Vue Frontend.

The only data that must be persisted is the Mongo database. External volume to
Mongo DB data folder was created and moved out of the container to ensure data
persistence when the application is redeployed.

A separate backend network was created not to expose Mongo DB outside the Docker
compose deployment.

The configuration is minimal but sufficient for the load expected. The application
expects at most 30 visitors per day people in the early stage of a project.

Figure 10.4. Service deployment diagram

10.4 Reverse Proxy
On the actual VM, there is a statically installed Nginx. This Nginx accepts all con-
nections to the VM since there are multiple other services. For our domain, the Let’s
Encrypt bot was configured.

. Redirects travel-info.cz/api to port 4001 - Backend. Redirects travel-info.cz/ to port 4000 - Frontend

45

Chapter 11
Testing

This chapter describes 4 types of testing performed on this application: unit testing,
integration testing, end to end testing and user testing.

The application mainly comprises CRUD (Create, Read, Write, Update) operations
on the data layer and GraphQL communication. There is not much business logic
to test except input validation; therefore, testing focuses more on the correctness of
GraphQL API and its connection to the frontend. The following diagram 11.1 depicts
the application architecture layers [todo REF] and test levels that cover them.

GraphQLData Layer Data Acess Layer Frontend

Backend Ktor integration tests

End to End Cypress tests

Unit tests

Figure 11.1. Test coverage of layered architecture.

11.1 Test Goals
. Test CRUD operations on the data model. Test Security (Unauthenticated modification, data access). Test integration between frontend and backend. User Kiosk Testing

11.2 Backend Testing
„Ktor provides a special testing engine that doesn’t create a web server, doesn’t bind
to sockets, and doesn’t make any real HTTP requests. Instead, it hooks directly into
internal mechanisms and processes an application call directly. This results in quicker
tests execution compared to running a complete web server for testing.“ [30]

The Ktor framework provides special integration test DSL called testApplication.
It runs a new application for each test. This DSL was extended to clear the database
just after the startup. The test usually requires application in a specific initial state,
such as users are already registered or have some initial seed data. For this, we can use
our multiplatform client 8.2, example 11.3.

46

. 11.2 Backend Testing

The following list contains integration tests with respect to the entities. Some tests
from the CRUD matrix were grouped into a single test since most of the create and
update operations are implemented as a single upsert operation.

. Authentication: Test the GraphQL directive @AuthHotelDirective.. TEST: authenticated modification of categories. TEST: unauthenticated modification of categories. Hotel: Test CRUD operations on HotelEntity. TEST: prevent trip insertion to another hotel. TEST: upsert categories. TEST: update hotel settings. TravelInfo: Test CRUD operations on TravelInfoEntity. TEST: upsert, delete TravelInfo. Trip: Test CRUD oprations on TripEntity. TEST: upsert and modify trip. TEST: delete trip

A code coverage plugin was added to evaluate what portion of code runs in all
tests. It does not indicate if the code is correct. The more code is run, the higher
the probability that a bug is discovered. Therefore we try to achieve as extensive
code coverage as possible. The following table 11.2 contains the code coverage from
integration testing. However, the results might not be entirely correct. The official
Kotlin coverage tool Kover 1 is in beta version 0.5, and there are cases where results
are incorrectly computed.

Figure 11.2. Code coverage table.

1 https://github.com/Kotlin/kotlinx-koverKover Github page.

47

https://github.com/Kotlin/kotlinx-kover

11. Testing .
val hotelActions = HotelActions(client)
hotelActions.registerHotel(hotel)
hotelActions.authorize(credentials)
val tripId = hotelActions.upsertTrip(data)._id
assertEquals(1, hotelActions.getTrips(listOf(tripId)).size)
hotelActions.deleteTrip(tripId)
assertEquals(0, hotelActions.getTrips(listOf(tripId)).size)

Figure 11.3. Using Multiplatform client for testing.

11.3 Frontend Testing
The last part of testing is to verify the correct implementation between frontend user
actions, such as adding a trip and GraphQL API. There were two considered options.
The first option was to mock the input and responses in the browser; the other option
was to run the backend alongside the frontend and implement complete End to End
testing. Mocking the responses would not verify the correctness of the GraphQL queries;
therefore, developing full E2E is favourable for testing the whole application.

There are two main frameworks for frontend testing Selenium and Cypress. „Cy-
press was originally designed to run end-to-end (E2E) tests on anything that runs in a
browser. A typical E2E test visits the application in a browser and performs actions
via the UI just like a real user would.“[31] End to End tests were implemented using
Cypress to keep our frontend stack in one programming language — Typescript.

. General setting:. TEST: Edit hotel settings. Test TravelInfo:. TEST: Add new TravelInfo. TEST: Delete TravelInfo. Test Trip:. TEST: Add new Trip. TEST: Delete Trip. Test TripCategory:. TEST: Add new TripCategory. TEST: Delete TripCategory

The following example shows and Cypress test 11.4 Add new TripCategory for il-
lustration purposes. It opens a popup for editing categories, types a name, saves the
new category and checks if the result exists.

it('Add new TripCategory', () => {
cy.get("#add-new-trip-category").click()
cy.get("#popup-edit-category").should("exist")
cy.get("#popup-edit-category-name").type(name)
cy.get("#popup-edit-category-submit").click()
cy.contains(".categories", name).should("exist")

})

Figure 11.4. Cypress test.

48

. 11.4 Small Usability Testing

11.4 Small Usability Testing

This small usability survey evaluates the quality of the content and possible future im-
provements. The recommended number of participants is 5, according to Jakob Nielsen
and Thomas K. Landauer[32]. The usability survey was conducted as an interview.
The kiosk and the online mobile version of this product were briefly introduced before
the interview. A more thorough analysis of the benefits of this product will be done
after it is officially released and used in production, approximately in fall 2022.

11.4.1 Survey

. Platform preference: Which version of the system should be the priority.. Which version of the information system do you find more prompting to explore
in the hotel, the touch screen kiosk or the online onboarding website?. Information quality: This question collects what kind of travel information we

should further include in the application.. What kind of trips, trip categories and accommodation information are you missing
in the application?. Other information: This question collects future nice to have features which would

bring additional benefits to the guests.. What other information you would like to see in the system?

11.4.2 Results

. Platform preference:. 5/3 answered that the on-site touch screen kiosk is preferable.. Information quality:. Trail map is missing. Too much nonformated text. Not enought trips. Missing aquapalace activity. What to do on the first day. Information about local restaurants are missing. Other information:. Weather forecast. Welness reservation option. QR link to the official website. Add page with with a tourist map (mapy.cz). Add indicator if an activity is free or not. Extract common attributes, such as opening hours, prices and highlight them in
UI

There were three excellent remarks which will be added in future versions:

. Weather forecast. Page with a tourist map. Information about local restaurants

49

11. Testing .

11.5 Testing Summary
The application was tested on all program levels using unit tests, integration tests and
end to end frontend tests using Cypress. The purpose was to catch refactoring bugs
when new features were being added. They helped verify that no features broke other
features.

A small usability survey uncovered 2 missing features (Missing weather forecast and
tourist map) and 1 important data quality issue (Missing dining options).

50

Chapter 12
Project Future

The project will be deployed and maintained in Penzion U Veselých for at least one
year to collect insight into how guests search for travel information.

. Maintain the project.

. Generate more travel content for the system.

. Create QR leaflets that will be hung on the guest room door to increase the number
of visits.

. Add tools to collect primary statistical data such as the number of views on a trip
or total time spent in session.

. Evaluate the actual benefit after one year in production.

The ultimate goal is to build a website where hotel owners will put non-payable travel
content in exchange for free advertisement. It was mainly described in the section
future of travel platforms 3.6.

. Redesign the UI / UX from the collected feedback.

. Create a website where hotels will be able to register and participate in generating
travel content.

51

Chapter 13
Conclusion

This thesis completed the assignment by first analyzing the problem, proposing a solu-
tion, validating the idea by user testing and implementing the minimum viable product.

The 2 chapter briefly described a minimum viable product and why it is essential
for product development. The following chapter 3, outlined communication between
guests and hospitality providers regarding travel information and typical user groups
to describe the target audience and understand their pain points regarding holiday
planning. An information system consisting of an on-site touchscreen kiosk and an
onboarding website was designed to address those pain points in chapter 4.

Two product validation user tests using a high fidelity Figma prototype were designed
in chapter 5 to verify that guests benefit from the system. The validation test showed
a need for this product from the guest’s point of view to gain travel information and
from the hotel’s point of view to decrease the time to serve the guests.

MVP concept was formally described using functional and nonfunctional requests in
chapter 4. Chapter 6, 7 analyzed the software and architectural approach. The analysis
determined that the web is the ideal technology for both the kiosk and the onboarding
microsite. The application was implemented using a monolithic approach using the
Ktor framework on the backend and Vue 3 on the frontend, chapter 8.

Chapter 9 described hardware setup and required adjustments in software to make
Rasberry Pi work as a kiosk. A production environment with a deployment pipeline
was set up on virtual private server, chapter 10.

The final product underwent integration testing and end to end testing using cypress
11. A small user survey of 5 guests evaluated the quality of content and proposed some
future features.

In the summer of 2022, the MVP will be deployed in Penzion U Veselých. The plan
is to add more content and analyze long-term benefits for the guests. The final user
survey discovered additional useful features, such as adding an interactive map with
trails. Those features will be added if the system proves to be viable.

52

References

[1] Tourism Satellite Account. Czech Statistical Office. 2020.
https://www.czso.cz/csu/czso/satelitni_ucet_cestovniho_ruchu.

[2] 2022 State of the Hotel Industry Report In Collaboration With Accenture. The
American Hotel & Lodging Association. 2022.
https://www.ahla.com/sites/default/files/AHLA%20SOTI%20Report%20202
2%201.24.22.pdf.

[3] Eric Ries. The lean startup : how constant innovation creates radically successful
businesses. London; New York: Portfolio Penguin, 2011 . ISBN 9780670921607
0670921602.
http://www.amazon.de/The-Lean-Startup-Innovation-Successful/dp/0670
921602/ref=sr_1_2?ie=UTF8&qid=1396199893&sr=8-2&keywords=eric+ries.

[4] Interní informace a statistiky. Penzion U veselých. 2022.
http://veselypenzion.cz/.

[5] Relative market share of major online travel agencies (OTAs) in Europe in 2019.
Statista. 2019.
https://www.statista.com/statistics/870046/online-travel-agency-
ota-market-share-in-europe/.

[6] Portál kudy z nudy.cz – fenomén mezi portály cestovního ruchu. CzechTourism.
2022.
https://www.kudyznudy.cz/o-kudy-z-nudy.

[7] Play Store - Alfred Key. Previo. 2022.
https://play.google.com/store/apps/details?id=cz.previo.alfred&hl=
cs&gl=US.

[8] Connect your application to Booking.com. Booking.com. 2022.
https://connect.booking.com/.

[9] Price List for Previo. Previo. 2022.
https://www.previo.cz/cenik-systemu-previo.

[10] What is Prototyping? Interaction Design Foundation. 2022.
https://www.interaction-design.org/literature/topics/prototyping.

[11] Avrora Shuhalii. What is the difference between low and high fidelity prototypes?
Medium. 2020.
https://bootcamp.uxdesign.cc/what-is-the-difference-between-low-
and-high-fidelity-prototypes-b1f3612f85f7.

[12] Visualize user behavior . Hotjar. 2022.
https://www.hotjar.com/product/heatmaps/.

[13] Meet Django. Django Software Foundation. 2022.
https://www.djangoproject.com/.

[14] Adrian Scholes. Apps That Need ACID. Volta Active Data. 2016.

53

https://www.czso.cz/csu/czso/satelitni_ucet_cestovniho_ruchu
https://www.ahla.com/sites/default/files/AHLA%20SOTI%20Report%202022%201.24.22.pdf
https://www.ahla.com/sites/default/files/AHLA%20SOTI%20Report%202022%201.24.22.pdf
http://www.amazon.de/The-Lean-Startup-Innovation-Successful/dp/0670921602/ref=sr_1_2?ie=UTF8&qid=1396199893&sr=8-2&keywords=eric+ries
http://www.amazon.de/The-Lean-Startup-Innovation-Successful/dp/0670921602/ref=sr_1_2?ie=UTF8&qid=1396199893&sr=8-2&keywords=eric+ries
http://veselypenzion.cz/
https://www.statista.com/statistics/870046/online-travel-agency-ota-market-share-in-europe/
https://www.statista.com/statistics/870046/online-travel-agency-ota-market-share-in-europe/
https://www.kudyznudy.cz/o-kudy-z-nudy
https://play.google.com/store/apps/details?id=cz.previo.alfred&hl=cs&gl=US
https://play.google.com/store/apps/details?id=cz.previo.alfred&hl=cs&gl=US
https://connect.booking.com/
https://www.previo.cz/cenik-systemu-previo
https://www.interaction-design.org/literature/topics/prototyping
https://bootcamp.uxdesign.cc/what-is-the-difference-between-low-and-high-fidelity-prototypes-b1f3612f85f7
https://bootcamp.uxdesign.cc/what-is-the-difference-between-low-and-high-fidelity-prototypes-b1f3612f85f7
https://www.hotjar.com/product/heatmaps/
https://www.djangoproject.com/

References .
[15] The 2021 State of JS survey. State Of JavaScript. 2021.

https://2021.stateofjs.com/en-US/.
[16] RESTful web API design. Microsoft. 2022.

https://docs.microsoft.com/en-us/azure/architecture/best-practices/
api-design.

[17]
[18] GraphQL Experience Over Time. State Of JavaScript. 2019.

https://2019.stateofjs.com/data-layer/graphql/.
[19] Kyle Brown. On Architectural Testability. Medium. 2019.

https://kylegenebrown.medium.com/on-architectural-testability-40784
59c5a90.

[20] Kacey Bui. Introduction to Event-Driven Architecture. Medium. 2021.
https://medium.com/microservicegeeks/introduction-to-event-driven-
architecture-e94ef442d824.

[21] What is event streaming. Medium. 2022.
https://kafka.apache.org/intro.

[22] Joan Goal. Email Scheduling Application with JobRunr . Medium. 2021.
https://medium.com/edreams-odigeo-tech/email-scheduling-applicatio
n-with-jobrunr-d37fd18b4898.

[23] Sam Newman. Building microservices. Second edition ed.. Beijing: O’Reilly, 2021.
ISBN 978-149-2034-025.

[24] Ramesh Mhetre. When to choose Microservices Architecture Over Monolithic?
Why? Medium. 2018.
https://medium.com/@mhetreramesh/when-to-choose-microservices-archi
tecture-over-monolithic-why-794aed04d8db.

[25] GraphQL Kotlin. Expedia Group. 2022.
https://opensource.expediagroup.com/graphql-kotlin/docs/schema-
generator/customizing-schemas/directives/.

[26] GridFS Documentation. Mongo DB. 2022.
https://www.mongodb.com/docs/manual/core/gridfs/.

[27] Base64 - Encoded size increase. Mozilla MND. 2022.
https://developer.mozilla.org/en-US/docs/Glossary/Base64#encoded_si
ze_increase.

[28] Kotlin Multiplatform use cases. Kotlin Foundation. 2022.
https://kotlinlang.org/docs/multiplatform.html.

[29] Kotlin Symbol Processing API . Kotlin Foundation. 2022.
https://kotlinlang.org/docs/ksp-overview.html.

[30] Testing Ktor Framework. Kotlin Foundation. 2022.
https://ktor.io/docs/testing.html.

[31] Why Cypress. Cypress.io. 2022.
https://docs.cypress.io/guides/overview/why-cypress#What-you-ll-
learn.

[32] Jakob Nielsen, and Thomas K. Landauer. A Mathematical Model of the Finding of
Usability Problems. In: Proceedings of the INTERACT ’93 and CHI ’93 Conference
on Human Factors in Computing Systems. New York, NY, USA: Association for

54

https://2021.stateofjs.com/en-US/
https://docs.microsoft.com/en-us/azure/architecture/best-practices/api-design
https://docs.microsoft.com/en-us/azure/architecture/best-practices/api-design
https://2019.stateofjs.com/data-layer/graphql/
https://kylegenebrown.medium.com/on-architectural-testability-4078459c5a90
https://kylegenebrown.medium.com/on-architectural-testability-4078459c5a90
https://medium.com/microservicegeeks/introduction-to-event-driven-architecture-e94ef442d824
https://medium.com/microservicegeeks/introduction-to-event-driven-architecture-e94ef442d824
https://kafka.apache.org/intro
https://medium.com/edreams-odigeo-tech/email-scheduling-application-with-jobrunr-d37fd18b4898
https://medium.com/edreams-odigeo-tech/email-scheduling-application-with-jobrunr-d37fd18b4898
https://medium.com/@mhetreramesh/when-to-choose-microservices-architecture-over-monolithic-why-794aed04d8db
https://medium.com/@mhetreramesh/when-to-choose-microservices-architecture-over-monolithic-why-794aed04d8db
https://opensource.expediagroup.com/graphql-kotlin/docs/schema-generator/customizing-schemas/directives/
https://opensource.expediagroup.com/graphql-kotlin/docs/schema-generator/customizing-schemas/directives/
https://www.mongodb.com/docs/manual/core/gridfs/
https://developer.mozilla.org/en-US/docs/Glossary/Base64#encoded_size_increase
https://developer.mozilla.org/en-US/docs/Glossary/Base64#encoded_size_increase
https://kotlinlang.org/docs/multiplatform.html
https://kotlinlang.org/docs/ksp-overview.html
https://ktor.io/docs/testing.html
https://docs.cypress.io/guides/overview/why-cypress#What-you-ll-learn
https://docs.cypress.io/guides/overview/why-cypress#What-you-ll-learn

. .
Computing Machinery, 1993. 206–213. ISBN 0897915755.
https://doi.org/10.1145/169059.169166.

55

https://doi.org/10.1145/169059.169166

Appendix A
Thesis Assignment

ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

474405Osobní číslo:JanJméno:VeselýPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačů

Otevřená informatikaStudijní program:

Softwarové inženýrstvíSpecializace:

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název diplomové práce:

Informační systém pro prezentaci služeb hotelu a aktivit v okolí v rámci pobytu a objednávky

Název diplomové práce anglicky:

Information system for presentation of hotel services and activities in surroundings as a part of the
onboarding process

Pokyny pro vypracování:
Seznamte se s problematikou informování hostů o možnostech trávení dovolené a produktového vývoje.
Analyzujte jaké jsou nejdůležitější informace, které host potřebuje vědět. Navrhněte řešení [1,2], jak tyto údaje digitalizovat
a prezentovat zákazníkovi v průběhu objednávky formou jednoduchého Event Driven systému [4].
Vytvořte MVP (minimum viable product), který zahrne digitální prezentaci služeb penzionu a aktivit v okolí, administraci z
pohledu ubytovatele a komunikační kanál mezi ubytovatelem a zákazníkem.
Otestujte aplikaci z hlediska softwarového návrhu a implementace (Stabilita, škálování). Změřte její přínos. (Uživatelské
testování, návštěvnost) [2, 3].

Seznam doporučené literatury:
[1] OSTERWALDER, Alexander, Yves PIGNEUR a Tim CLARK. Business model generation: a handbook for visionaries,
game changers, and challengers. Hoboken, NJ: Wiley, c2010. ISBN 9780470876411.
[2] OSTERWALDER, Alexander, Yves PIGNEUR, Gregory BERNARDA a Alan SMITH. Value proposition design: how to
create products and services customers want. Hoboken: John Wiley, [2014]. Strategyzer series. ISBN 9781118968055.
[3] BLAND, David J. a Alexander OSTERWALDER. Testing business ideas. Hoboken, New Jersey: John Wiley & Sons,
[2020]. ISBN 9781119551447.
[4] BELLEMARE, Adam. Building Event-Driven Microservices. 1. O'Reilly Media, [2020]. ISBN 9781492057895.

Jméno a pracoviště vedoucí(ho) diplomové práce:

Ing. Jiří Šebek kabinet výuky informatiky FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) diplomové práce:

Termín odevzdání diplomové práce: _____________Datum zadání diplomové práce: 11.02.2022

Platnost zadání diplomové práce: 30.09.2023

prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryIng. Jiří Šebek

podpis vedoucí(ho) práce

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

57

Appendix B
Screenshots

Figure B.1. Screen edit trip popup.

59

B Screenshots .

Figure B.2. Screen edit hotel settings.

60

	TITLE
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents
	/Figures
	Introduction
	Benefits
	Thesis Goals

	Product Design
	Lean Startup Methodology
	Build-Measure-Learn Feedback Loop
	Minimum Viable Product

	Our Hypothesis

	Collection of Requirements
	Data Source
	Target Audience
	Travel Platforms
	Booking.com
	Trip Advisor
	Turistika.cz, Kuduznudy.cz

	Trends in Hospitality
	Future of Travel Platforms
	Guest Satisfaction
	Accommodation
	Holiday Experience

	Similar Products
	Previo Alfred
	MyStay

	Related Systems
	Hotel Website
	Booking.com

	Check-in Process
	Before Arrival
	After Arrival

	Formulation of Requirements
	Onboarding Microsite
	Functional Requirements
	Nonfunctional Requirements

	On-site Kiosk
	Functional Requirements
	Nonfunctional Requirements

	User Types
	ER Model

	Product Idea Validation
	Designing User Experiments
	Kiosk User Testing
	Info Website User testing

	Available Technology
	Web Frameworks
	Spring Boot
	Django
	Ktor

	Database Storage Engine
	Scaleability
	Document Databases
	Relational Databases

	Web Frontend Architecture
	Server Rendered
	Client Rendered
	Hybrid Approach
	React
	Vue

	API Design
	REST
	GraphQL

	Backend Architecture
	Requirements
	Possible Approaches
	Event-Driven
	Microservices
	Monolith

	Monolithic Approach
	Layered Architecture
	Data Layer
	Data Access Layer
	GraphQL API
	HTTP Layer

	Implementation Details
	Backend
	GraphQL Entity Mapping
	GraphQL Authentication
	Input Validation
	Storing Images

	Multiplatform client
	Kotlin Multiplatform
	Kotlin Symbol Processing
	Compiling DTOs
	Client Library

	Frontend
	State Management
	Navigation
	Onboarding Screen
	Trip Screen
	Touchscreen Kiosk

	Kiosk - Hardware / Software
	Screen
	Computing Unit

	Operating System
	Touch Screen Correction
	Autorun Configuration

	Cost of Operation
	Deployment
	Pipeline
	Stages

	Docker Images
	Vue frontend
	Ktor Backend

	Docker compose
	Reverse Proxy

	Testing
	Test Goals
	Backend Testing
	Frontend Testing
	Small Usability Testing
	Survey
	Results

	Testing Summary

	Project Future
	Conclusion
	References
	Thesis Assignment
	Screenshots

